Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces
نویسندگان
چکیده
منابع مشابه
Pancake bouncing on superhydrophobic surfaces
Engineering surfaces that promote rapid drop detachment1,2 is of importance to a wide range of applications including anti-icing3-5, dropwise condensation6, and self-cleaning7-9. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nano-textures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the s...
متن کاملSuperhydrophobic-like tunable droplet bouncing on slippery liquid interfaces
Droplet impacting on solid or liquid interfaces is a ubiquitous phenomenon in nature. Although complete rebound of droplets is widely observed on superhydrophobic surfaces, the bouncing of droplets on liquid is usually vulnerable due to easy collapse of entrapped air pocket underneath the impinging droplet. Here, we report a superhydrophobic-like bouncing regime on thin liquid film, characteriz...
متن کاملWater droplet impact on elastic superhydrophobic surfaces
Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface ...
متن کاملForces Acting on Sessile Droplet on Inclined Surfaces
Although many analytical, experimental and numerical studies have focused on droplet motion, the mechanics of the droplet while still in its static state, and just before motion starts, are not well understood. A study of static droplets would shed light on the threshold voltage (or critical inclination) for initiating electrically (or gravitationally) induced droplet motion. Before the droplet...
متن کاملJumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Omega
سال: 2019
ISSN: 2470-1343,2470-1343
DOI: 10.1021/acsomega.9b01348